DOI: 10.1002/cmdc.200700214

Design, Synthesis, and Biological Evaluation of Caprolactam-Modified Bengamide Analogues

Gang Liu,^[a] Yi-Ming Ma,^[a] Wan-Yi Tai,^[a] Chuan-Ming Xie,^[a] Yu-Lin Li,^[b] Jia Li,^{*[a]} and Fa-Jun Nan^{*[a]}

The sponge-derived bengamides, first isolated by Crews and co-workers in 1986,^[1] have a unique molecular structure and a broad array of biological activities that include antitumor, antibiotic, and anthelmintic properties.^[2] Because of their striking and attractive antitumor properties, these molecules have been the focus of many studies on their synthetic^[3] and biological^[4] aspects. Bengamide B (Figure 1), the most promising

Figure 1. Bengamide B and LAF389.

of this family,^[5] and its 5'-position-derived ester analogues, were investigated fully by Kinder et al.^[6] One bengamide analogue, LAF389^[7] (Figure 1), has been used in a clinical trial; however, the poor pharmacokinetic properties and unclear side effects of LAF389, which appeared early in the trial, have prevented its further development.^[8]

Until now, the structural modification of bengamides has focused mainly on improving their water solubility and ease

of synthesis. Side chain modification has proven successful, and isopropyl replacement by *tert*-butyl has significantly simplified the synthesis of their analogues. However, these modifications have not yet shown clear structure–activity relationships (SAR) compared with other studies of side chain optimi-

_						
[a]	Dr. G. Liu, ⁺ YM. Ma, ⁺ WY. Tai, ⁺ CM. Xie, Prof. Dr. J. Li, Prof. Dr. FJ. Nan					
	Chinese National Center for Drug Screening					
	Shanghai Institute of Materia Medica					
	189 Guo Shou Jing Road, Shanghai 201203 (China)					
	Fax: (+86)2150800954 or (+86)2150801552					
	E-mail: fjnan@mail.shcnc.ac.cn					
	jli@mail.shcnc.ac.cn					
[b]	Prof. YL. Li					
	State Key Laboratory of Applied Organic Chemistry and					
	Institute of Organic Chemistry, Lanzhou University					
	Lanzhou 730000 (China)					
[+]	These authors contributed eaually.					

ChemMedChem 2008, 3, 74 - 78

trated in Scheme 1.

ported previously.^[9]

Scheme 1. Design of 5'-, 6'-, and 7'-substituted bengamide analogues (respectively specified positions R^1 , R^2 , and R^3 ; see Table 1).

5'-Substituted caprolactams were synthesized from alkeneamide RCM products through a multistep conversion (8–11), or through derivation of compound 9 (12 and 13), as illustrated in Scheme 2. Simple hydrogenation of cyclized products 6 and 7 gave key intermediates 8 and 9, which were deprotected to afford compounds 10 and 11. Caprolactams 12 and 13^[10] were obtained from compound 9 through hydrolysis, mesylation, azidation, hydrogenation, acylation, and deprotection.

zation. There have been few reports on diverse modifications

of the caprolactam unit until recently, possibly because of the

lack of a simple and flexible method to synthesize functional-

ized caprolactams. Following our successful construction meth-

odology for the ring-closing metathesis (RCM) reaction of α -

aminoacrylamides to substituted aminocaprolactams,^[9] we

now present a series of bengamide analogues modified at the 5'-, 6'-, and 7'-positions of the caprolactam subunit and their antitumor activity on MDA-MB-435 human breast carcinoma cells. The chemistry used to prepare these analogues is illus-

Bengamide analogues (1 a - 1 i) were synthesized from a known lactone fragment $2^{[7]}$ and substituted caprolactam **3** by

a coupling reaction. The key functionalized caprolactam 3 was

obtained through hydrogenation and deprotection of the cyclization products prepared from **5** using the RCM strategy re-

The simple N-substituted bengamide analogues (1 a' - 1 w')were prepared from diverse N-substituted caprolactams, which were synthesized by using a similar procedure, as outlined in Scheme 3 and Scheme 4, to give simple N-alkylating products 18a-18c, 18d, 18p, 18u (Scheme 3) and 18i-18k, 18l-18o(Scheme 4). Compounds 18e (enantiomer of 18d) and 18owere prepared from the pure enantiomer 17', and other intermediates were obtained from racemic compound 17. After de-

74

COMMUNICATIONS

Scheme 2. Synthesis of 5'-substituted caprolactams. Reagents and conditions: a) H_2 (100 kPa), $Pd(OH)_2/C$ (20 wt %), quant.; b) CAN, CH_3CN/H_2O , 45% for **10**; c) K_2CO_3 , MeOH, H_2O , 95%; d) Et_3N , MsCl, CH_2CI_2 , 0°C, 97%; e) NaN₃, DMF, 80°C, *cis/trans* = 2.1:1, 73%; f) H_2 (100 kPa), Pd/C (5%), 99%; g) $C_6H_{11}COCI$, py, CH_2CI_2 , 56% for **15**, 58% for **16**; h) Na/NH₃, THF, 57% for **12**, 67% for **13**. CAN = ceric ammonium nitrate, DMF = *N*,*N*-dimethylformamide.

Scheme 3. Synthesis of N-substituted caprolactams. Reagents and conditions: a) NaH, DMF, $0^{\circ}C \rightarrow RT$, 1) Ph-(CH₂)₂OTs, 70% for 18a, 2) Ph(CH₂)₃OTs, 80% for 18b, 3) Ph(CH₂)₄OTs, 50% for 18c; b) LiHMDS, BrCH₂COOEt, 80% for 18d; c) NaH, DMF, BrCH₂CH₂OCH₃, RT, 81%; d) NaH, DMSO, 2-bromo-1-cyclopropylethanone, RT, 62%. LiHMD-S = lithium hexamethyldisilazanide.

Scheme 4. Synthesis from derivatization of N-substituted caprolactam intermediates. Reagents and conditions: a) NaOH, H₂O, THF, RT, 90%; b) EDC, HOBt, ROH (specified R group, see Table 1, 1i'-1k'), RT, 60–83% for 18i-18k; c) LiBH₄, THF/EtOH; d) CyCOOH, EDC, DMAP, CH₂Cl₂, 75%. DMAP = 4-dimethylaminopyridine, EDC = 3-(3-dimethylaminopropyl)-1-ethylcarbodiimide, HOBt = 1-hydroxybenzotriazole.

protection of key intermediates **8–13** and **18a–18w**, all bengamide analogues **1a–1i**, **1a'–1w'** were finally obtained through coupling of substituted caprolactams and lactone as reported^[6,7] in 25–70% yield, as shown in Scheme 1.

All these compounds were tested on MDA-MB-435 human breast carcinoma cells for their antitumor activity (Table 1). Compound 1a, a diastereomeric mixture of LAF389, was used as a positive control, and most of the other bengamide analogues were tested as a mixture, except for those that could be separated easily as a diastereomer in an earlier stage of the synthesis. As can be seen from Table 1, 1a displayed significant activity, with an IC₅₀ value of 40 пм in our assay system; this is consistent with the activity reported for the pure stereoisomer of LAF389.

From the reported data on LAF389,^[8] we deduced that the instability of the 5'-ester may contribute to the rapid metabolism and side effects of LAF389, and we replaced the ester with a more stable amide bond. However, the result was disappointing in that the antitumor activity of both the cis (1c) and (1d) compounds detrans creased markedly. A diverse modification on this position was studied systematically at Novartis, and several in vitro potent and water-soluble compounds have been discovered, including LAF389, mentioned above. Although the in vivo potency did not differ significantly, we speculate that modification at the other positions may produce more potent compounds.

Compound **1***i*, substituted at the 5'- and 6'-positions, is the first type of compound to confirm this speculation. After cycloalkyl substitution at the 6'position, the activity of **1***i* increased by 4.5-fold relative to

Table 1. Structures and MDA-MB-435 human breast carcinoma in vitro activity of selected bengamide analogues modified at positions 5', 6', and 7'.									
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $									
Compd	R ¹	R ²	R ³	к IC ₅₀ [µм] ^[а]	Compd	R^1 (R^2 , $R^3 = H$)	IC ₅₀ [µм] ^[а]		
1a	Н	Н	or the second se	$\begin{array}{c} 0.040 \pm 0.002 \\ (1)^{[b]} \end{array}$	1 h′	Viti OEt	1.120 ± 0.240		
1 b	Н	Н	OAc	2.092±0.231	1 i′	Prr OCH3	0.25 ± 0.021		
1 c (2′, 5′ <i>cis</i>)	н	н	N H N	2.393±0.382	1 j′	-rr- O	0.424 ± 0.017		
1 d (2', 5' <i>trans</i>)	Н	Н	N H H	2.013±0.180	1 k′		$\textbf{0.275}\pm\textbf{0.005}$		
1 e		н	rr O	0.712±0.016	1 L′	SZ2 OH	$\textbf{0.202}\pm\textbf{0.005}$		
1 f		н	OAc	0.364 ± 0.059	1 m′	v₂ H₂OH	0.424 ± 0.068		
1 g (more polar) ^[c]	ОН	Н	and of the second secon	0.078±0.010	1 n′	Z M3 OH	0.358 ± 0.071		
1 h (less polar) ^[c]	ОН	н	r ^{de} 0	0.312±0.014	1 o ′ (2′ <i>S</i>)	××~~0	0.017±0.008 (10)		
1i	Н	22	OAc	0.466±0.033	1 p′	VCH3	$\textbf{0.396} \pm \textbf{0.046}$		
1 a′	s ^{rs}	н	н	0.287±0.039	1 q′	"v	0.236 ± 0.064		
1 b′	w ^s	Н	н	1.306±0.476	1 r′	-s ^{res}	0.557 ± 0.129		
1 c′	r ² r ² , y ₃	Н	Н	0.275±0.028	1 s′	Pref OCH3	0.269±0.041		
1 ď′ (2′S+2′R)	o O OEt	Н	н	0.305 ± 0.017	1 ť	0 	0.276 ± 0.029		
1 e ′ (2′ <i>S</i>)	o oEt	Н	н	0.141±0.009 (20)	1 u′	rrr O	1.286 ± 0.226		
1 f ′ (2′ <i>R</i>)	, rr OEt	Н	н	1.617±0.274	1 v′	Me	0.626±0.234		
1 g′	OEt	Н	Н	2.113±0.532	1 w′	wa M4	0.781 ± 0.160		
doxorubicin	0			0.281 ± 0.035					

[a] Values represent the average \pm SEM; percent net growth = [(cell+drug) A_{550/690}-initial A_{550/690}/(cell+drug vehicle DMSO) A_{550/690}-initial A_{550/690}-initial A_{550/690}/×100; values in parentheses indicate solubility in H₂O [mg mL⁻¹]. [b] For **1 a**, solubility refers to its diastereomer LAF389. [c] The configuration of these two compounds were not determined, but they were separated by column chromatography.

1 b. This preliminary result indicates that proper substitution at the 6'-position is tolerated. Among the N-substituted caprolactam bengamide analogues, **1 f** displayed activity with an IC_{s0} value 5.7 times that of **1 b**. At the same time, compared with compound **1 e** ($IC_{s0} = 0.71 \ \mu$ M), compounds **1 g** and **1 h** showed potent activity, with IC_{s0} values of 78 nM and 0.31 μ M, respectively.

tively. These data indicate that N-substitution on caprolactam greatly influences the antitumor activity.

Simple N-substituted bengamides are very interesting because previous reports including research at Novartis^[6] have indicated that this position does not tolerate further modification except with H and Me groups. However, our research reveals that SAR at this position differs slightly from those reported. We found that diverse functional group introduction at the 7'-position may greatly influence the antitumor activity, which may present a new starting point for further modification.

Based on the speculations mentioned above and the simplified synthetic path of bengamide analogues, we introduced limited diverse functional groups on the amide nitrogen atom, including aryl, ester, hydroxy, ether, and keto groups. All functional groups displayed a certain amount of activity, with IC₅₀ values ranging from 0.017 µм to 2.110 µм. Interestingly, by comparing the most potent analogue 1o' with 1a, one can find that transfer of the cyclohexylcarbonyloxy group from the 5'-position of 1a to the amide N atom, tethered with a twomethylene-unit linker, forms a more potent and simpler analogue 1 o'. This compound has an IC₅₀ value of 17 nm and solubility in H_2O of 10 mg mL⁻¹, values that are more advantageous than the values of 1 a, the IC₅₀ value of which is 40 nm and solubility is 1 mg mL⁻¹. Another potent compound, **1**e^{\prime}, has an activity of 0.141 μ M and a solubility in H₂O of 20 mg mL⁻¹. Investigation of the antitumor activity of N-acetic ethyl ester derived bengamide analogues 1d', 1e', and 1f' indicates that the 2'S epimer 1e' displays the best result with an IC₅₀ value of 0.141 μ M. Another epimer (1 f', 2'R) has a low IC₅₀ value of 1.617 μm, and a diastereomeric mixture of these two epimers 1 d' produced only modest activity ($IC_{50} = 0.305 \,\mu$ м). Compounds 1g and 1h also show that configurational differences at the 2'-position decreased potency by a factor of four ($IC_{50} =$ 0.078 µм and 0.312 µм, respectively).

From these results, we can clarify some primary SAR for simple N-substituted bengamide analogues. In the case of esters and alcohols, antitumor activity decreased first but then increased as the chain length of the R group increased (see 1d', 1g', 1h', and 1l'-1n'), and the two-carbon chain length gave the best result. In addition, for esters, increasing the substituent size at the terminal position of the R group seemed to have little effect on activity (see 1i' and 1k'), but this effect is clear in the case of ketones (1t' and 1u'). For aryl groups, the influence of alkyl chain length and substitutional effects were still not clear (1a'-1c' and 1q'-1s'). For simple alkyl functional groups, the increased length led to slightly decreased activity (1v' and 1w'), and in both cases, inferior activity relative to other functional groups was observed.

In summary, the present work provides a new strategy for research on bengamide analogues. We demonstrated for the first time that 5'-, 6'-, and 7'-position-substituted bengamide analogues display activity in a general way and that the 7'-position, in particular, accommodates diverse substitution. Derivation from this position produced a new potent compound, which is a more potent and water-soluble analogue, **1** o' $(IC_{50} = 17 \text{ nM}, \text{ water solubility: } 10 \text{ mg mL}^{-1})$, than LAF389. The synthesis of these potent compounds may present a simpler new method to produce natural product bengamide-like compounds with potent antitumor activity. More detailed SAR studies focusing on this type of compound and their effects in vitro and in vivo are in progress.

Experimental Section

General procedure for the synthesis of compounds 18a-18w: a solution of compound 17 (1 g, 4.3 mmol) in THF (8 mL) was added to a suspension of NaH (200.0 mg, 4.8 mmol) in THF (10 mL) at room temperature. This mixture was stirred for 1 h, and a solution of phenethyl-4-methylbenzenesulfonate (1.3 g, 4.8 mmol) in THF (8 mL) was added. After additional stirring for 2 h the reaction mixture was cooled to 0 °C, treated with a saturated solution of NH₄Cl, and extracted with AcOEt. The organic phase was dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by chromatography to give **18a** (0.45 g, 41%). ¹H NMR (CDCl₃, 300 MHz): δ = 1.45 (s, 9 H), 1.74–2.04 (m, 6 H), 2.84 ((m, 2H), 3.08 (dd, *J* = 15.6, 4.8 Hz, 1 H), 3.45 (m, 2 H), 3.80 (m, 1 H), 4.34 (m, 1 H), 6.02 (d, *J* = 5.4 Hz, 1 H), 7.20–7.33 ppm (m, 5 H).

Following reported procedures,^[6,7] bengamide analogues 1a-1i, 1a'-1w' were synthesized:

1 g: ¹H NMR (CDCI₃, 300 MHz): δ = 7.99 (d, *J* = 6.3 Hz, 1 H), 5.83 (d, *J* = 15.8 Hz, 1 H), 5.41 (dd, *J* = 15.9, 7.2 Hz, 1 H), 4.92 (m, 1 H), 4.59 (m, 1 H), 4.22 (t, *J* = 6.6 Hz, 1 H), 4.12 (m, 1 H), 3.83–3.75 (m, 2 H), 3.62 (d, *J* = 4.2 Hz, 1 H), 3.55 (s, 3 H), 3.47 (dd, *J* = 15.9, 5.4 Hz, 1 H), 3.37 (m, 1 H), 3.04 (m, 1 H), 2.29 (m, 1 H), 2.13 (m, 1 H), 2.02–1.62 (m, 8 H), 1.41–1.22 (m, 5 H), 1.02 ppm (s, 9 H); ¹³C NMR (CDCI₃, 75 MHz): δ = 175.2, 172.0, 166.8, 146.1, 123.3, 81.6, 74.8, 72.8, 72.6, 65.2, 60.0, 51.4, 50.5, 43.3, 33.3, 32.1, 32.0, 31.5, 30.5, 29.9, 29.6, 29.1, 29.0, 25.9, 25.7, 25.6, 25.5 ppm; HRMS (ESI): *m/z*: 537.2803 [*M*+Na⁺], C₂₅H₄₂N₂O₉Na requires 537.2788.

1 e': ¹H NMR (CDCl₃, 300 MHz): δ = 8.09 (d, *J* = 6.0 Hz, 1 H), 5.82 (d, *J* = 15.6 Hz, 1 H), 5.41 (dd, *J* = 15.6, 7.2 Hz, 1 H), 4.66 (dd, *J* = 10.1, 6.6 Hz, 1 H), 4.38 (brs, 1 H), 4.30–4.04 (m, 5 H), 3.82–3.74 (m, 2 H), 3.72 (brd, *J* = 3.9 Hz, 1 H), 3.59 (m, 1 H), 3.53 (s, 3 H), 3.23 (dd, *J* = 15.3, 4.8 Hz, 2 H), 2.03 (m, 2 H), 1.80–1.66 (m, 5 H), 1.28 (t, *J* = 7.2 Hz, 3 H), 1.02 ppm (s, 9 H); ¹³C NMR (CDCl₃, 75 MHz): δ = 173.1, 172.3, 169.7, 145.9, 123.3, 80.7, 74.8, 73.1, 72.5, 61.7, 60.3, 52.4, 51.3, 51.0, 33.2, 31.4, 29.6, 28.0, 27.1, 14.4 ppm; HRMS (ESI): *m/z*: 481.2478 [*M*+Na⁺], C₂₂H₃₈N₂O₈Na requires 481.2526.

1 o': ¹H NMR (CDCl₃, 300 MHz): δ = 8.08 (d, *J* = 6.0 Hz, 1 H), 5.81 (d, *J* = 15.6 Hz, 1 H), 5.43 (dd, *J* = 15.6, 7.2 Hz, 1 H), 4.60 (dd, *J* = 10.7, 6.3 Hz, 1 H), 4.36 (m, 1 H), 4.23–4.16 (m, 3 H), 3.78 (m, 2 H), 3.66 (brt, *J* = 5.7 Hz, 1 H), 3.57 (m, 1 H), 3.52 (s, 1 H), 3.33 (dd, *J* = 15.3, 4.8 Hz, 2 H), 2.27 (m, 1 H), 2.20–1.60 (m, 8 H), 1.59–1.20 (m, 6 H), 1.00 ppm (s, 9 H); ¹³C NMR (CDCl₃, 75 MHz): δ = 176.0, 172.7, 172.1, 145.7, 123.4, 81.0, 74.7, 73.0, 72.6, 62.3, 60.1, 52.3, 50.1, 48.3, 43.3, 33.2, 31.5, 29.6, 29.2, 29.1, 27.8, 27.7, 25.9, 25.6 ppm; HRMS (ESI): *m/z*: 549.3127 [*M*+Na⁺], C₂₇H₄₆N₂O₈Na requires 549.3152.

Acknowledgements

This work was supported by the Major State Hi-tech Research and Development Program (Grant 2006AA09z442), the National Natural Science Foundation of China (Grant 30572242), and Shanghai Commission of Science and Technology (Grant 05dz19331).

Keywords: antitumor activity · bengamide analogues · LAF389 · water solubility

CHEMMEDCHEM

- [1] E. Quinoa, M. Adamczeski, P. Crews, G. J. Bakus, J. Org. Chem. 1986, 51, 4494.
- [2] a) F. R. Kinder, K. W. Bair, J. Bontempo, P. Crews, A. M. Czuchta, R. Nemzek, Z. Thale, A. Vattay, R. W. Versace, S. Weltchek, A. Wood, S. D. Zabludoff, P. E. Phillips, *Proc. Am. Assoc. Cancer Res.* 2000, *41*, 600; b) A. Groweiss, J. J. Newcomer, B. R. O'Keefe, A. Blackman, M. R. Boyd, *J. Nat. Prod.* 1999, *62*, 1691.
- [3] For bengamide analogues synthesis, see: a) F. Sarabia, A. Sanchez-Ruiz, J. Org. Chem. 2005, 70, 9514; b) F. Sarabia, A. Sánchez-Ruiz, Tetrahedron Lett. 2005, 46, 1131; c) G. Fonseca, G. A. Seoane, Tetrahedron: Asymmetry 2005, 16, 1393; d) F. R. Kinder, S. Wattanasin, R. W. Versace, K. W. Bair, J. Bontempo, M. A. Green, Y. J. Lu, H. R. Marepalli, P. E. Phillips, D. Roche, L. D. Tran, R. M. Wang, L. Waykole, D. D. Xu, S. Zabludoff, J. Org. Chem. 2001, 66, 2118; e) M. G. Banwell, K. J. McRae, J. Org. Chem. 2001, 66, 6768; f) W. Liu, J. M. Szewczyk, L. Waykole, O. Repic, T. J. Blacklock, Tetrahedron Lett. 2002, 43, 1373; g) R. K. Boeckman, Jr., T. J. Clark, B. C. Shook, Helv. Chim. Acta 2002, 85, 4532.
- [4] For biological activity of bengamide and its analogues, see: a) Z. Thale, F. R. Kinder, K. W. Bair, J. Bontempo, A. M. Czuchta, R. W. Versace, P. E. Phillips, M. L. Sanders, S. Wattanasin, P. Crews, J. Org. Chem. 2001, 66, 1733; b) H. Towbin, K. W. Bair, J. A. DeCaprio, M. J. Eck, S. Kim, F. R. Kinder, A. Morollo, D. R. Mueller, P. Schindler, H. Y. Song, J. V. Oostrum,

R. W. Versace, H. Voshol, J. Wood, S. Zabludoff, P. E. Phillips, *J. Biol. Chem.* **2003**, *278*, 52964; c) S. Kim, K. LaMontagne, M. Sabio, S. Sharma, R. W. Versace, N. Yusuff, P. E. Phillips, *Cancer Res.* **2004**, *64*, 2984.

- [5] a) D. J. Faulkner, Nat. Prod. Rep. 2002, 19, 1; b) D. J. Faulkner, Nat. Prod. Rep. 2000, 17, 1.
- [6] F. R. Kinder, R. W. Versace, K. W. Bair, J. Bontempo, D. Cesarz, S. Chen, P. Crews, A. M. Czuchta, C. T. Jagoe, Y. Mou, R. Nemzek, P. E. Phillips, L. D. Tran, R. Wang, S. Weltchek, S. Zabludoff, J. Med. Chem. 2001, 44, 3692.
- [7] D. D. Xu, L. Waykole, J. V. Calienni, L. Ciszewski, G. T. Lee, W. Liu, J. Szewczyk, K. Vargars, K. Prasad, O. Repic, T. J. Blacklock, *Org. Process Res. Dev.* 2003, *7*, 856.
- [8] H. Dumez, H. Gall, R. Capdeville, C. Dutreix, A. T. van Oosterom, G. Giaccone, Anti-Cancer Drugs 2007, 18, 219.
- [9] G. Liu, W. Y. Tai, Y. L. Li, F. J. Nan, Tetrahedron Lett. 2006, 47, 3295.
- [10] cis and trans isomers were separated by column chromatography after the azidation step, which gave 73% overall yield of both isomers; see Scheme 2 e.

Received: August 17, 2007 Published online on November 12, 2007